The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex.
نویسندگان
چکیده
In chlorophyll biosynthesis protochlorophyllide reductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide) to chlorophyllide, providing a rare opportunity to trap and characterize catalytic intermediates at low temperatures. Moreover, the presence of a chlorophyll-like molecule allows the use of EPR, electron nuclear double resonance, and Stark spectroscopies, previously used for the analysis of photosynthetic systems, to follow catalytic events in the active site of POR. Different models involving the formation of either radical species or charge transfer complexes have been proposed for the initial photochemical step, which forms a nonfluorescent intermediate absorbing at 696 nm (A696). Our EPR data show that the concentration of the radical species formed in the initial photochemical step is not stoichiometric with conversion of substrate. Instead, a large Stark effect, indicative of charge transfer character, is associated with A696. Two components were required to fit the Stark data, providing clear evidence that charge transfer complexes are formed during the initial photochemistry. The temperature dependences of both A696 formation and NADPH oxidation are identical, and we propose that formation of the A696 state involves hydride transfer from NADPH to form a charge transfer complex. A catalytic mechanism of POR is suggested in which Pchlide absorbs a photon, creating a transient charge separation across the C-17-C-18 double bond, which promotes ultrafast hydride transfer from the pro-S face of NADPH to the C-17 of Pchlide. The resulting A696 charge transfer intermediate facilitates transfer of a proton to the C-18 of Pchlide during the subsequent first "dark" reaction.
منابع مشابه
Cryogenic and laser photoexcitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase.
The light-activated enzyme NADPH-protochlorophyllide oxidoreductase (POR) catalyzes the trans addition of hydrogen across the C-17-C-18 double bond of protochlorophyllide (Pchlide), a key step in chlorophyll biosynthesis. Similar to other members of the short chain alcohol dehydrogenase/reductase family of enzymes, POR contains a conserved Tyr and Lys residue in the enzyme active site, which ar...
متن کاملUltrafast catalytic processes and conformational changes in the light-driven enzyme protochlorophyllide oxidoreductase (POR).
The enzyme POR (protochlorophyllide oxidoreductase), from the family of alcohol dehydrogenases, reduces protochlorophyllide into chlorophyllide on the absorption of light. The reduction involves the transfer of two protons and two electrons and is an important regulatory step in the biosynthesis of chlorophyll. In recent years, due to the availability of large quantities of the pure enzyme, muc...
متن کاملThe catalytic steps of the light-driven enzyme, protochlorophyllide oxidoreductase (POR) proceed via sequential hydride and proton transfers
Protein dynamics are crucial for realizing the catalytic power of enzymes, but how enzymes have evolved to achieve catalysis is unknown. The light-activated enzyme protochlorophyllide oxidoreductase (POR) catalyzes sequential hydride and proton transfers in the photoexcited and ground states, respectively and is an excellent system for relating the effects of motions to catalysis. Here, we have...
متن کاملMechanistic Reappraisal of Early Stage Photochemistry in the Light-Driven Enzyme Protochlorophyllide Oxidoreductase
The light-driven enzyme protochlorophyllide oxidoreductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide). This reaction is a key step in the biosynthesis of chlorophyll. Ultrafast photochemical processes within the Pchlide molecule are required for catalysis and previous studies have suggested that a short-lived excited-state species, known as I675*, ...
متن کاملExcited-State Charge Separation in the Photochemical Mechanism of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase**
The unique light-driven enzyme protochlorophyllide oxidoreductase (POR) is an important model system for understanding how light energy can be harnessed to power enzyme reactions. The ultrafast photochemical processes, essential for capturing the excitation energy to drive the subsequent hydride- and proton-transfer chemistry, have so far proven difficult to detect. We have used a combination o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 37 شماره
صفحات -
تاریخ انتشار 2006